
1

A space reduction mechanism for the dynamic
selection of ontological alignments

Paul Doran, Valentina Tamma, Ignazio Palmisano, and Terry R. Payne

F

Abstract—Effective communication in open environments relies on the
ability of agents to reach a mutual understanding of the exchanged mes-
sage by reconciling the vocabulary (ontology) used. Various approaches
have considered how mutually acceptable mappings between corre-
sponding concepts in the agents’ ontologies may be determined dy-
namically through argumentation-based negotiation (such as Meaning-
based Argumentation). However, the complexity of this process is high,
reaching Π

(p)
2 -complete in some cases. As reducing this complexity

is non-trivial, we propose the use of ontology modularization as a
means of reducing the space over which possible correspondences
are negotiated. The suitability of different modularization approaches
as filtering mechanisms for reducing the argumentation search space
is investigated. We empirically demonstrate that some modularization
approaches not only reduce the number of alignments required to reach
consensus, but can also predict those cases where a service provider is
unable to fully satisfy a request, without the need for argumentation.

Index Terms—Check keywords

1 INTRODUCTION

Effective communication within open and dynamic environ-
ments is dependent on the ability of agents (i.e. components
that provide, or consume services) to reach a mutual under-
standing over a set of messages, where no prior assumptions
can be made on the vocabulary used to communicate. Unlike
small, closed environments (where all the components are
known at design time), open, Web-scale environments are
typically characterised by large numbers of services which
are continually evolving or appearing, and where syntactic
and semantic heterogeneity is the norm. Thus, few assump-
tions can be made about the services on offer at any time,
the way in which they are modeled, or the terminology or
vocabulary that they use. In such cases, it becomes imperative
to specify the explicit vocabularies or ontologies used to
facilitate meaningful communication as environments open
up, or the heterogeneity of large systems increases. This has
been facilitated by the emergence of standards for representing
ontologies and optimised reasoners capable of processing them
within a tractable timeframe [3].

In addition, transactions should be interpreted by both
service providers and consumers based on the underlying
semantics of the messages themselves, and thus these agents
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should resolve any type of mismatch that may exist due to
the use of different, but conceptually overlapping ontologies.
However, this reconciliation has to be achieved automatically
and at run-time (without human intervention) if such compo-
nents are to transact as the size of the environment grows.

Early systems avoided the problem of ontological hetero-
geneity by relying on the existence of a shared ontology, or
simply assuming that a canonical alignment (i.e., a set of
ontology correspondences, als known as mappings), possibly
defined at design time, could be used to resolve ontological
mismatches. However, such assumptions work only when the
environment is (semi-) closed and carefully managed, and no
longer hold in open environments where a plethora of ontolo-
gies exist. The emergence of different alignment-generation
tools [9] has resulted in the existence of multiple, but differing
alignments between ontologies, whose suitability can vary
depending on the agent’s tasks, goals and preferences. Whilst
these techniques can be used to reconcile heterogeneous
ontologies, they generally operate offline, typically requiring
some level of human intervention, and thus are unsuitable
for generating correspondences dynamically. However, these
alignments can be generated offline and stored for later use
within publicly available repositories, such as the Ontology
Alignment Server (OAS) [10].

Recent approaches have been proposed that rely on nego-
tiation to dynamically resolve ontological mismatches within
open environments, by identifying mutually acceptable align-
ments or shared concepts between different ontologies [6],
[12], [17]. However, the use of negotiation to collaboratively
search a space of candidate correspondences becomes pro-
hibitively costly as the size of the ontologies grows, and thus
a reduction of this search space is highly desirable.

In this paper we explore the use of Ontology Modularization
as a filtering mechanism for reducing the size of the ontologies
used, and hence the size of the search space. Ontology modu-
larization techniques typically produce a subset of ontological
definitions (with respect to a supplied signature), known as an
ontology module.

We examine a small number of techniques proposed that
differ on the conditions used to determine the subset of
definitions from the original ontology, and use these as a
filtering mechanism for alignment negotiation. A framework
is presented that integrates the use of modularization with an
existing alignment negotiation approach, and the reduction in
negotiated alignments is studied. The results demonstrate that
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the number of negotiated alignments can be reduced by an
average of 55.14% UPDATE THIS NUMBER (i.e. through
eliminating unnecessary alignments for a given transaction).
Whilst this reduction is highly dependent on the modulariza-
tion technique used, the results also demonstrate that some
techniques can eliminate the need for negotiation by rapidly
identifying cases when no suitable alignments are available.

The paper is organized as follows: . . .

2 COMMUNICATION IN OPEN ENVIRONMENTS
As stated in Sect. 1, communication in open environments
relies on the agents’ ability to reach a mutual understanding.
The openness of the environment implies that agents can
potentially ask any other agents for information or services,
and must be able to do so irrespective of the types of
ontological mismatches that can affect the ontologies used to
communicate. Assuming that there is always a canonical set
of ontology mappings (possibly defined at design time) is an
assumption that is becoming increasingly untenable with the
evolution of open environments. A number of approaches have
tried to overcome this problem in different ways [6], [12], [17].

van Diggelen et al [17] propose the dynamic generation of
a minimal shared ontology; minimality is evaluated against
the ability of the agents to communicate with no information
loss. However, this approach uses a limited ontology model
whose expressivity allows only simple taxonomic structures,
with no properties and only a few restrictions, such as dis-
jointness and partial overlap. The expressive power of this
model is non-standard, in that it does not correspond to
any of the OWL flavours, and a reformulation of the model
in Description Logics (the logical theory underpinning the
standard ontology language OWL [15]) is mentioned, but no
formal proof appears to be given of the soundness of this
reformulation. Therefore, its applicability to real application
ontologies expressed in OWL and published on the Web seems
limited.

The increased availability of mechanisms for ontology map-
ping and alignment [9] implies that an agent can potentially
deal with several ontology correspondences for any pair of
concepts in two ontologies, therefore the problem of enabling
dynamic communication between heterogeneous ontologies in
open environments can be recast as a collaborative search
through the space of all ontology mappings between two
ontologies.

Mechanisms for the storing and provisioning of these map-
pings have been devised, for example Euzenat & Valtchev [10]
introduce the notion of an Ontology Alignment Server (OAS),
that is a dedicated agent able to generate all the potential
mappings between two agent ontologies. The availability of
these mappings, thus, allows agents to determine, in principle,
the correspondences that are most suitable to achieve their
goals.

Search mechanisms can be as simple as a brute force
approach that selects only those mappings whose level of con-
fidence is above a certain threshold specified for each agent, or
can imply some form of negotiation between agents in order
to determine those mappings that are mutually acceptable by
both agents [6], [12].

Approaches to solve this search problem exploits the use
of argumentation as a negotiation mechanism to locate map-
pings that are mutually acceptable by both agents have been
described in literature. Laera et al. [12] use argumentation as a
rational means for agents to select ontology mappings based on
the notion of partial-order preferences over the different types
of correspondences (e.g. structural vs terminological), using
the Value Based Argumentation framework (VAF) [2], which
prescribes different strengths to arguments on the basis of the
values they promote and the ranking given to these values by
the agents. Their approach assumed the use of OWL [15] as
a common ontology language. Dos Santos et al. [6] proposed
a variant on this idea, by representing ontology mappings as
disjunctive queries in Description Logics.

The complexity of the search through the space of possible
alignments can, however, become prohibitive when complex
negotiation mechanisms like argumentation are involved, and
reach Π(p)

2 -complete [8] 1.
This can make the search costly, especially when it is

used to establish a common communication vocabulary (thus
constituting the initial phase of any communication or trans-
action). Thus, a reduction of the search space before the
argumentation process takes place, thus reducing the time
neeeded to complete the process, seems to be an essential step
to make the use of argumentation based techniques viable in
open environments.

In Sect. 3 we present the Meaning-based argumentation [12]
approach for negotiating ontology alignments, and then we
propose our approach to reduce the space of all candidate
mappings by identifying the subset of an agent’s ontology that
is relevant to the task the agent wishes to perform. Agents
can then argue over this subset of the original alignment,
thus exploring a search space which is smaller than the
original search space, therefore skipping correspondences that
are likely to be irrelevant for the current task.

3 ARGUMENTATION-BASED NEGOTIATION OF
ONTOLOGY ALIGNMENTS
Sect. 2 discussed the two possible approaches for agent com-
munication in dynamic environments. We argue that a viable
way to establish ontology alignments on the fly is through the
use of negotiation on the candidate ontology mappings that
can be generated between two agent ontologies.

This paper follows the Meaning-based argumentation ap-
proach proposed in [12] that allows agents with different ter-
minologies to dynamically and automatically reach consensus
on the terminology they use to interact. In this approach a
correspodence (or mapping) is described as a tuple: m =
〈e, e′, n,R〉, where e and e′ are the entities between which
a relation is asserted, n is a degree of confidence in this
correspondence and R is the relation, such as equivalence,
holding between e and e′ [9]. The approach assumes that there
can be many possible mappings between two agent ontologies;
these mappings are computed offline and stored by a dedicated
agent Ontology Alignment Service [10]. Therefore, the OAS

1. This is the complexity of deciding whether an arguments belongs to the
preferred extension of an agent, as explained in Sect. 3
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provides the set of available candidate mappings that agents
need to agree over. Hence, the argumentation process acts
as a search over the space of all the candidate mappings
in order to find those that are mutually acceptable according
to the preferences expressed by all the agents involved. It is
assumed that the OAS is able to provide a set of justifications
G that motivate the existence of a mapping. The agents also
have a private threshold value ε that is compared against the
degree of confidence n that the OAS associates with each
mapping. The private pre-ordering of preferences over the
types of mappings, and the private threshold are used by the
agents to argue in favour or against a correspondence, and
to support their arguments with rational motivations based on
these preferences.

The argumentation process is based on the Value-Based
Argumentation Framework (VAF) [1].

Definition 3-1. A Value-Based Argumentation Framework
(VAF) is defined as 〈AR,A,V, η〉, where (AR,A) is an
argumentation framework (AF), V is a set of k values which
represent the types of arguments and η : AR → V is a
mapping that associates a value η(x)V with each argument
x ∈ AR.

The VAF is an extension of Dung’s [7] argumentation
framework. , V is a set of 5 values representing the types of
ontological mismatches that can occurr between ontologies,
i.e. terminological, semantic, structural (internal and exter-
nal), and extensional2. The element η denotes a mapping,
η:AR → V , that associates a value η(x) ∈ V with each
argument x ∈ AR. When arguing over ontology mappings
using the VAF, an argument x ∈ AR is a triple x = 〈G,m, σ〉
where m is a correspondence 〈e, e′, n,R〉; G is the grounds
justifying a prima facie belief that the correspondence does,
or does not hold; and σ is one of {+,−} depending on
whether the argument is that m does or does not hold.
The grounds justifying correspondences can be determined
from the knowledge in ontologies, and this includes both the
extensional and intensional OWL ontology definitions.

An argument x is attacked by the assertion of its negation
(counter-argument), thus an argument y ∈ AF rebuts an
argument x ∈ AF if x and y are arguments for the same
mapping but with different signs, e.g. if x and y are in the
form x = 〈G1,m,+〉 and y = 〈G2,m,−〉, x counter-argues
y and vice-versa. The VAF allows us to associate a level of
strength with arguments, to be used in addition to the set of
attacks defined A.

In order to allow for capturing the notion of different agents
having different perspectives on the same candidate mappings,
the notion of audience is introduced.

Definition 3-2. An audience for a V AF is a binary relation
R ⊆ V × V whose (irreflexive) transitive closure, R∗, is
asymmetric, i.e. at most one of (v, v′), (v′, v) are members of
R∗ for any distinct v, v′ ∈ V . We say that vi is preferred to
vj in the audience R, denoted vi �R vj , if (vi, vj) ∈ R∗. Let
R be an audience, α is a specific audience (compatible with

2. We refer the interested reader to [12] for a detailed explanation of these
types of mismatches.

R) if α is a total ordering of V and ∀ v, v′ ∈ V, (v, v′) ∈
α⇒ (v′, v) 6∈ R∗

The definition of audience is central to the notion of accept-
ability of an argument, since given a set of arguments, and their
respective counter-arguments, the agents in an audience need
to consider which of them they should accept. The accept-
ability of some arguments with respect to some audience, de-
pends on the agents ability to determine a preferred extension
that represents a consistent position within an argumentation
framework, AF , that can be defended against all attacks, and
cannot be further extended without causing it to be inconsistent
or open to attacks. More formally:

Definition 3-3. Let 〈AR,A,V, η〉 be a V AF and R an
audience. For arguments x, y in AR, x is a successful attack
on y with respect to the audience R if: (x, y) ∈ A and it is
not the case that η(y) �R η(x). An argument x is acceptable
to the subset S with respect to an audience R if: for every
y ∈ AR that successfully attacks x with respect to R, there is
some z ∈ S that successfully attacks y with respect to R. A
subset S of AR is conflict-free with respect to the audience R
if: for each (x, y) ∈ S×S, either (x, y) 6∈ A or η(y) �R η(x).
A subset S of AR is admissible with respect to the audience
R if: S is conflict free with respect to R and every x ∈ S is
acceptable to S with respect to R.

Definition 3-4. A subset S is a preferred extension for the
audience R if it is a maximal admissible set with respect to
R.

In this framework it is assumed that an agent Agi is com-
pletely autonomous and has access to its individual ontology:

Definition 3-5. An agent Agi is defined by a 4-tuple
〈Oi, V AFi, P ref i, εi〉 where Oi is the OWL ontology;
V AFi = 〈ARi, Ai,
V, ηi〉 is the Valued-based Argumentation Framework of the
agent Agi; Prefi is the private pre-ordering of preferences
over V and εi is the private threshold value.

A set of agents A = {Ag1, . . . , Agn} form a multi-agent
system (MAS). The preferences and threshold selected by an
agent depend on its context and on the agent’s ontology, and its
structural features, such as the depth of the subclass hierarchy
and branching factor, ratio of properties to concepts, etc. The
agent can then determine its preferences and threshold based
on the characteristics of its ontology: an agent committing to
an ontology lacking in structure will select a preference for
terminological mapping, whilst it will prefer an extensional
mapping if it commits to an ontology rich in instances.
In Laera’s framework, arguments and counter-arguments are
generated by an agent using these preferences and thresholds.

3.1 Upper Bound For Argumentation Based Ontol-
ogy Alignment

3.1.1 Version 1
A = set of all possible alignments, whereby a ∈ A|a =
{m1,m2, . . . ,mn}. Where m = (e, e′, η, r). Therefore, we
can define the set N as the set of entities in O, such that
e ∈ N ; the set M as the set of entities in O′, such that e′ ∈M ;
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the set R as the set of relations, such that r ∈ R. Thus, the
upper bound of A can be defined as3:

|N | × |M | × |R| (1)

3.1.2 Version 2
A = set of all possible alignments, whereby a ∈ A|a =
{m1,m2, . . . ,mn}. Where m = (e, e′, η, r, g). Therefore, we
can define the set N as the set of entities in O, such that
e ∈ N ; the set M as the set of entities in O′, such that e′ ∈M ;
the set R as the set of relations, such that r ∈ R and the set
G as the set of all possible grounds, such that g ∈ G. Thus,
the upper bound of A can be defined as4:

|N | × |M | × |R| × |G| (2)

4 ONTOLOGY MODULARIZATION

The Meaning-based argumentation framework presented in
[12] and recalled in Sect. ?? provides a mechanism for
collaboratively searching over the space of all possible agent
correspondences to locate those that are acceptable to both
agents. Taking into account the messages that the agents are
exchanging, the search space space can be reduced by mod-
ularizing the ontology with respect to a signature, consisiting
of the named concepts mentioned in the messages. Depending
on the mentioned concepts and on the ontologies involved in
their definitions, the number of correspondences which refer to
the module obtained can be much smaller than the number of
original candidate correspondences, thus restricting the search
space the agents have to explore.

This paper proposes to adopt an ontology modulariza-
tion [4], [5] process to select a subset of the concepts on
which the agents negotiate. The hypothesis is that reducing the
ontology to a module corresponds to a reduction in the number
of correspondences that are used in the negotiation process,
which then selects those that are acceptable to all the agents
involved in a transaction. Furthermore, the paper analyses to
what extent the reduction in the search space affects the search,
and whether all the modularization techniques behave equally
when used as a filtering mechanism over the the search space
(see Sect. 7).

An ontology, O, is defined as a pair, O =
(Ax(O), Sig(O)), where Ax(O) is a set of axioms
(intensional, extensional and assertional) describing the
entities e (classes, properties, and instances) in the ontology
O and Sig(O) is the signature of O, that is the set of entity
names used by O, i.e., its vocabulary5. The notion of ontology
module extraction can thus be more formally defined as:

Definition 4-1. Ontology module extraction extracts a con-
sistent6 module M from an ontology O that covers a specified
signature Sig(M), such that Sig(M) ⊆ Sig(O).

3. η is not considered here as it is an infinite continuum
4. η is not considered here as it is an infinite continuum
5. This definition is agnostic with respect to the language used to represent

the ontology, but the modularization techniques in this paper assume OWLas
a language, and therefore Description Logic based semantics.

6. OWL is monotonic and hence guarantees consistency if the extraction is
done on a consistent ontology.

M is the relevant part of O that is said to cover the elements
defined by Sig(M), as such M ⊆ O. M is an ontology itself
and it is possible that further modules could be extracted from
it.

Ontology module extraction approaches can be split into
two distinct categories: logical approaches and traversal ap-
proaches. Logical approaches [4] focus on maintaining the
logical properties of coverage and minimality when extracting
modules. Traversal approaches [5], [14], [16] represent the
extraction as a graph traversal, with the module being defined
by the conditional traversal of a graph.

Logical approaches are based on the notion of conservative
extension [13]: an ontologyO1∪O2 is a conservative extension
of one of its modules O1 for a signature Sig if and only
if every logical consequence of O1 ∪ O2 formulated using
only symbols from Sig, is already a logical consequence
of O1. In other words, if adding the ontology O2 to O1

does not change the ontology O1 for what concerns the
concepts that are built only from the concept and role names
in the signature Sig. Logical approaches define a module
Oi within an ontology O as a subset of O such that O is
a conservative extension of Oi w.r.t. the concept and role
names that belong to Sig(Oi). Cuenca Grau et al [4] use
conservative extensions to define the notion of safety: O1 is
safe for O2 if O1 ∪ O2 is a conservative extension of O2.
Lutz et al [13] have shown that deciding if an ontology is
a conservative extension of an ontology module, and thus its
safety, is undecidable for OWL-DL. However, Cuenca Grau
et al. [4] have proposed a number of sufficient conditions for
safety, for example locality: if these conditions are satisfied
by an ontology, then it is safe, but the converse does not
necessarily hold. Testing for locality in expressive description
logics (such as the one underlying OWL-DL) is decidable,
but the ontology modules defined by means of locality are not
guaranteed to be minimal, as those defined by conservative
extensions. Jiménez-Ruiz et al. [11] defined two variants of
locality, namely ⊥ and >, depending on whether an Ontology
Engineer is modularising in order to generalise or specialise
the reused concepts. Both types of locality imply safety, and
they allow the definition of two extraction techniques, one for
the upper module (corresponding to testing for ⊥-locality),
and one for the lower module (corresponding to testing for
>-locality).

Extraction methods based on graph traversal utilise a graph
representation of the ontology, where an ontology O corre-
sponds to the graph O = (N,V ) where the set of nodes N
is the set of concept names, and the vertices in V are the
relations between the concepts, such as property restrictions
and subsumption relationships7. Ontology modules are defined
as a conditional traversal on the graph O. Seidenberg and
Rector [16] aim to include all the elements (concepts and
restrictions) that participate, either directly or indirectly, in the
definition of the already included entities. Assuming that the
concept A is in the module then, all of A’s superclasses and
subclasses are included; but its sibling classes are not. The

7. Graph traversal extraction methods are possible since OWL ontologies
map to RDF graphs (see http://www.w3.org/TR/owl-semantics/)
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restrictions (intersection, union and equivalent) of the already
included classes can now be added to the module. Finally,
links across the hierarchy from the previously included classes
are traversed; the target of these also have their superclasses
included.

In contrast to Seidenberg et al, Doran et al [5] include all the
subclasses of the input signature, but none of the superclasses.
The aim is to include everything that is defined by the input
signature in a tractable time (the approach has polynomial
complexity), thus all relations between these subclasses are
included. The only exception is that in the first step of the
traversal, disjoint classes are not included.

The approach by Noy and Musen [14] proposes a module
extraction technique based on traversal views, i.e. a set of
directives that guide the traversal of the ontology graph, and
in particular for defining the length of the paths that will be
followed along different types of relationships. This approach
allows domain experts to specify explicitly which subset of
the ontology they are interested in, and therefore is user led.

WE NEED D’AQUIN HERE

4.1 Combining Ontology Modularization and Argu-
mentation

1. Ag1 asks a query, query(A ∈ Sig(O)), to Ag2.
2. Ag2 does not understand the query, A /∈ Sig(O′), and informs

Ag1 they need to use an Ontology Alignment Service (OAS)
3. Ag1 produces, om(O, Sig(A)), an ontology module, M , to cover the

concepts required for its task.
4. Ag1 and Ag2 invoke the OAS. Ag1 sends its ontology, O and the

signature of M , Sig(M).
5. The OAS aligns the two ontologies and filters the correspondences

according to M . Only those correspondences featuring an entity from
M are returned to both agents.

6. The agents begin the Meaning-Based Argumentation process, and iterate
it, with each agent generating arguments and counter-arguments.

7. The iteration terminates when the agents reach an agreement on a set of
correspondences, and this set is returned to both agents.

8. Ag1 asks a query to Ag2 but uses the correspondences so that Ag2 un-
derstands, query(A ∈ Sig(O) ∧ B ∈ Sig(O′)) where A and B are
aligned.

9. Ag2 answers the query making use of the resulting alignment.

TABLE 1
Steps involved in Ontology Modularization and

Argumentation

Ontology modularization can be used as a pre-processing
step to improve the efficiency of an argumentation framework,
when used to search the space of all candidate ontology
mappings. When two agents communicate, only the initiating
agent (Ag1) is aware of its task, and consequently, what
concepts are relevant to this task. It can therefore select these
relevant concepts within the signature of the desired ontology
module. The signature of the resulting ontology module can
then be used to filter the correspondences, and consequently
the number of arguments necessary within the argumentation
process. The steps in Table 1 describe this process, whilst
Figure 1 depicts the process as a UML Sequence Diagram. It
is assumed that two agents, Ag1 and Ag2 have ontologies O
and O′ respectively.

The set of ontology correspondences are filtered at Step 5
according to the following function:

A

A

B

B

OAS

OAS

VAF

VAF

(1) ask( query )

(2) tell(invoke alignment service)

(3) M=om( O, Sig(O) )

(4) invoke( O, Sig(M) )

(4) invoke( O' )

(5) filter(align( O, O' ), Sig(M) )

alns = Alignments filtered 
 according to m

alns

alns

(6) argument( x )

(6) argument( y )

loop

agr = agreed alignments

(7) agr

(7) agr

(8) ask( query, agr )

(9) answer( query, agr )

Fig. 1. UML Sequence Diagram of Ontology Modulariza-
tion and Argumentation.

Definition 4-2. A filtering function, filter(), filters the set of
candidate mappings prior to argumentation Z into a subset
Z ′ ⊆ Z such that filter(Z, Sig(M)) : Z → Z ′ | ∀m ∈
Z ′ , m = 〈e, e′, n,R〉 and e ∈ Sig(M).

Steps 6 and 7 represent a black-box process, which is
the argumentation process. Modularization is therefore used
to filter the correspondences that are passed to this process.
The combination of these two processes reduces the cost of
reaching an agreement over the set of correspondences, by
reducing the size of the set of correspondences, and hence the
number of arguments.

5 POSSIBILITY FOR INFORMATION LOSS

Fig. 2. Possible scenario where information loss could
occur.

In the work presented in this paper it is assumed that an
agent knows all the concepts that are relevant to its task.
However, in practice it may be possible that this assumption
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does not hold. Consider the scenario shown in Figure 2. O
belongs to Ag1 and O′ belongs to Ag2, in the case where
no modularization is used, the following alignments are used:
m1 = 〈O : a, O′ : a′, 1,=〉, m2 = 〈O : b, O′ : b′, 1,=〉,
m3 = 〈O : c, O′ : c′, 1,=〉, m4 = 〈O : d, O′ : d′, 1,=〉. If
Ag1 were to ask Ag2 to give them all the instances of a
then Ag1 would be able to also make sense of the concept
d, even if it doesn’t know a property that connects them.

Now consider the case where modularization is used,
Ag1 extracts a module from O with the Sig(a, b, c) and this
produces the ontology module M that inlcudes a,b,c and the
properties that link them. When the possible ontology align-
ments are filtered according to this M , the set of alignments
that the agents would argue over is: m1 = 〈O : a, O′ : a′, 1,=
〉, m2 = 〈O : b, O′ : b′, 1,=〉, m3 = 〈O : c, O′ : c′, 1,=〉.
The possible fourth alignment in this case is not considered,
as the entity for d is not in M , however, when Ag2 answers
the query give me all the instances of a it can decide whether
or not to return the information regarding d’. In the case
that it decides not to then there is no problem, in this case
the assumption is that Ag1 knows all the concepts that are
relavant to its task. In the other case where it does return the
information regarding d’ then Ag1will not be able to make
full use of it as there is no alignment between d and d’.

5.1 Preventing Information Loss
A way to deal with the possible loss of information is for
Ag2 to also carry out a modularization step. Once the
alignments have been filtered Ag2 uses the entities identified
as a signature for modularization and filters the mappings
according to its module. There are two possible ways for
Ag2 to carry out this process:

Sol. 1 Ag1 filters the alignment according to its Sig(M),
which would produce the set of alignments A.
Ag2 then uses A as the input to its own om().
Ag2 now filters the alignments according to its
Sig(M ′). This strategy is labelled COMPLETE
(shortened to C).

Sol. 2 Rather than using A Ag2 uses a subset defined
by the Sig() by Ag1. This strategy is labelled
SIGNATURE −ONLY (shortened to SO).

The third possible approach (labelled NONE, shortened
in N ) is to accept the possibility of information loss and
therefore Ag2 is not supposed to do any modularization; the
three strategies are used in the evaluation and the results are
illustrated in Sect. 7.

Either of the two solutions would solve the problem pre-
sented in the example above. However, since Ag2 may
identify new, possibly relevant, entities Ag1 should now also
include the previously missing entities to the signature of its
ontology module. Evidently this recursive process could be ex-
pensive, and both agents could end up with ontology modules
equal to the original ontology. One possible way to prevent
this would be via conservative extensions [13] that guarantee
inferential completeness, but due to their undecidability above
EL++ the relaxation of the assumption made in this paper is
tested further in Sect. 7, where the effect of the two possible
solutions above are investigated.

6 AN ILLUSTRATIVE EXAMPLE

This simple example illustrates the ideas presented previ-
ously8 and relates them to the steps identified in Sect. 4.1.
Assume that we have two agents; Ag1 wishes to ask a
query of Ag2(Step 1), Ag1 wants to know the instances of
Paper_Author. Ag1 uses O1 the EKAW ontology9 and
Ag2 uses O2 the OpenConf10 ontology. Due to space con-
straints we only show a subset of these ontologies, in Figure
3. Until the agents have aligned their ontologies Ag2 (Step 2)
will be unable to fulfil the request of Ag1.

Fig. 3. Ontologies O1 and O2

Ag1 knows the concepts that are relevant for its task and
extracts an ontology module (Step 3), M , in this example the
M will only include the concept Paper_Author. Now when
the agents invoke the Ontology Alignment Service (OAS)
Ag1 will send its ontology O1 and the signature of M
(Sig(M) = {Paper Author})(Step 4). The OAS produces
the following set of possible correspondences:
m1 = 〈O1 : Paper Author, O2 : Author, 0.45,=〉
m2 = 〈O1 : Paper Author, O2 : Paper, 0.54,=〉
m3 = 〈O1 : Research Topic, O2 : Topics, 0.44,=〉
m4 = 〈O1 : Research Topic, O2 : Domain Topic, 0.44,=〉
m5 = 〈O1 : Person, O2 : People, 0.9,=〉

The OAS will now filter the alignments according to the
Sig(M) using the function defined in Sect. 4.1 (Step 5). The
result of this process is the following reduced set of ontology
correspondences:
m1 = 〈O1 : Paper Author, O2 : Author, 0.45,=〉
m2 = 〈O1 : Paper Author, O2 : Paper, 0.54,=〉

This reduced set of ontology correspondences will now
be used as input to the argumentation process(Step 6). The
preference ordering that the agents possess affects how the ar-
gumentation phase advances. However, this preference should
not affect the premise that the fewer alignments there are to
argue over then the fewer arguments that are generated. If
we assume now that Ag1 prefers terminological to external
structure (T � ES), whilst Ag2 prefers external structure to
terminological (ES � T). Thus, Ag1 accepts both m1 and
m2, whilst Ag2 accepts m1 and rejects m2.

The arguments and counter arguments made during the
argumentation phase are shown in Table ??. This set of
arguments allows the agents to build the argument graph,
shown in Figure 4; whereby the nodes represent the arguments
and the arcs represent the attacks relation, with the direction
indicating the direction of attack.

8. This example builds on the one presented in [12]
9. http://nb.vse.cz/ svabo/oaei2006/data/ekaw.owl
10. http://nb.vse.cz/ svabo/oaei2006/data/OpenConf.owl
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Fig. 4. Attack graph for the illustrative example.

The graph shows that both arguments A and C support m1,
but that arguments D and E argue against m2 whilst B is
in favour; thus D and E form a symmetric attach against
C. Given the different preferences of the two agents, the
preferred extensions are shown in Table 2. The argument
that are accepted by both agents are A and C. Thus, the
agreed alignment returned to both agents (Step 7) is m1.
If the two agents had argued over the alignments before
modularization then m1, m3, m4 and m5 would have been
the agreed alignments.

TABLE 2
Arguments for and against m1 and m2

Agent Preferred Extensions
Ag1 {A,C,B},{A,C}
Ag2 {A,C},{A,C,D},{A,C,E},{A,C,D,E}

Now Ag1 can ask Ag2the query (Step 8) and Ag2 is able
to answer (Step 9) due to the agreed set of alignments.

7 EVALUATION

The evaluation has two main objectives: (a) to quantify the
impact of the use of modularization techniques on the number
of mappings that the argumentation process receives as input;
(b) to quantitatively evaluate the quality of the resulting
alignments compared with the alignments obtained without
modularization. These two objectives are explained in the
following sections.

7.1 Ontologies and Tracks

Objective (a) requires a diversified set of ontologies, ideally
covering different domains, and a diversified set of alignment
techniques for the generation of alignments. This is required
to overcome the bias deriving from the alignment technique
being used, since a specific technique might produce extremely
small or extremely large modules, thus skewing the reduction
results, but the modules produced might not be useful for the
agents task. On the other hand, it is not easy to find extensive
sets of ontologies covering different domains and for which
there are reliable or verifiable mappings available, so a tradeoff
must be chosen.

The eleven ontologies used in the evaluation were taken
from the OAEI 2007 Conference Track repository (with the
exception of three ontologies whose memory requirements
for reasoning were over 2 GB). The ontologies are listed in
Table 3, complete with a brief characterization in terms of

the number of classes and properties, and the level of DL
expressivity used to represent them.

The alignment techniques available are those used by each
system participating in the OAEI tracks; in order to simplify
the experiment setup, the systems themselves are not involved
in the evaluation; the Alignment API is used instead to access
the submitted results. For the chosen track, five systems have
submitted a sufficient number of alignments for an overall
comparison, i.e., they align each ontology with the others;
some systems also provide reverse alignments, i.e., the align-
ments are of the form OA ↔ OB and OB ↔ OA.

The modularization techniques used in this evaluation are
some of those described in Sect. 4.1; in particular, Cuenca
Grau’s lower and upper techniques, d’Aquin’s, Doran’s
and Seidenberg’s have been used; the implementations
for these techniques are all available, and only minor
modifications to the code have been implemented, to enable
them to work in our experimental framework. For clarity, the
techniques have been labelled Techs = {BASELINE,
CUENCAGRAUU , CUENCAGRAUL, DAQUIN,
DORAN, SEIDENBERG} (shortened to {B, CGU ,
CGL, DAQ, DOR, SEID}); BASELINE corresponds
to the original alignment, i.e., the alignment as is produced
by the alignment techniques, and is used as baseline for
averaging the results.

7.2 Quality of Alignments

Objective (b) requires either a gold standard alignment as a
reference to evaluate the resulting mappings, or a method to
compare the reduced alignments with the original ones, i.e.,
a way to verify whether a reduced alignment is equivalent to
the original one with respect to correctness and completeness
of the results; for the latter evaluation, the following use case
is being considered, based on query answering:

Agent A1 and agent A2 engage in communication; A1

is asking queries of the kind QI = {x | x is a Y },
i.e., instance retrieval queries, to A2; alternatively, queries
of the kind Qsup = {x | x is a superclass of Y } and
Qsub = {x | x is a subclass of Y }, i.e., queries that
explore the concepts’ structure.

The original alignment M0 enables A2 to give the set of
answers X0; given a reduced alignment Mi, the corresponding
set of answers Xi is computed and compared to X0.

To do this, three retention measures are defined:

Definition 7-1 (Instance Retention). Given an OWL ontol-
ogy O, an OWL class C not defined in O and two alignments
M0 and Mi, with Mi ⊆M0, instance retention

IR : {O,C,M0,Mi} → [0, 1]

is the function defined as the number of instances of C
described in OtMi divided by the number of instances of C
described in O tM0.

Similar definitions can be given for Subclass Retention
and Superclass Retention:

Definition 7-2 (Subclass Retention). Given an OWL ontol-
ogy O, an OWL class C not defined in O and two alignments
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M0 and Mi, with Mi ⊆M0, subclass retention

SubR : {O,C,M0,Mi} → [0, 1]

is the function defined as the number of subclasses of C
defined in O t Mi divided by the number of subclasses of
C defined in O tM0.

Definition 7-3 (Superclass Retention). Given an OWL on-
tology O, an OWL class C not defined in O and two align-
ments M0 and Mi, with Mi ⊆M0, superclass retention

SupR : {O,C,M0,Mi} → [0, 1]

is the function defined as the number of superclasses of C
defined in O tMi divided by the number of superclasses of
C defined in O tM0.

These functions can be used to quantify what information
is lost by using a smaller alignment Mi, obtained by using a
modularization technique, in place of the original alignment
M0, taking into account the task at hand, which is represented
by the OWL classes used as signature for the modularization
process. The closest the result of a retention measure is to 1,
the less information is being lost due to the reduction in the
alignment size.

Retention functions work well under the hypothesis that for
all possible OWL classes on which the measure is computed
there are instances available (respectively, subclasses and
superclasses). In the ontologies used in the evaluation, this is
not always true, i.e., some concepts do not have instances and
some classes do not have superclasses or subclasses defined
in the ontology. Artificial instances can be added, but it is not
meaningful to add artificial subclasses or superclasses in the
cases in which they are missing; those cases are left out of
the current evaluation.

It is possible that for some concepts there are no alignments
that generate answers, i.e., there is no correspondence that
generates an answer for C with respect to O tM0, therefore
the retention measures give 0/0 indetermined form. These
cases are not averaged in the evaluation, since they depend
on the quality of the alignment itself, i.e., on the suitability
of the original alignment for communication, and not on the
modularization techniques or on the argumentation process;
therefore, evaluating and discussing these results would be
outside the scope of this paper.

A corner case is raised when the alignment Mi is empty,
i.e., when the modularization techniques generate modules that
do not refer to any concept mentioned in the mappings. In
this case, the retention measures can only report 0 or 0/0
indetermined form.

A value of 0 would mean that some answers that were
available with respect to M0 have been lost by reducing the
alignment, while a 0/0 would instead mean that there was no
retrievable answer; in this second case, reducing the alignment
to 0 has the advantage of skipping the argumentation and the
query answering phases, since it is already known that no
answers will be generated.

The number of cases in which this last hypothesis is true
has been evaluated in the current experiments, and there is
indeed evidence that this hypothesis is wrong only in 0.15%

of the cases, i.e., trusting an empty alignment obtained from
modularization to signify that no answers are available is
wrong in one case over six hundred. More details are given
in the following.

Ontology name # of classes # of properties DL expressivity
cmt 31 64 ALCHIF(D)

Conference 61 69 ALCHIF(D)
confOf 40 41 SHIF(D)
crs dr 16 22 ALCHIF(D)
edas 105 55 ALCHIF(D)
ekaw 75 38 SHIN

MICRO 33 31 ALCHOIF(D)
OpenConf 64 50 ALCHOI(D)
paperdyne 47 83 ALCHOIF(D)

PCS 25 43 ALCHIF(D)
sigkdd 51 33 ALCHI(D)

TABLE 3
Classes, properties and DL expressivity for the OAEI

ontologies.

7.3 Evaluation setup

The experiments are divided into runs; each run is described
as a tuple < O1, O2, A, T, S, I >, where:
• O1 and O2 are distinct ontologies from the same track

(the order is important, so each track produces n∗(n−1)
pairs);

• A is the alignment being produced by a specific alignment
technique on the pair of ontologies, and therefore a set
of mappings;

• T is a modularization technique, with S being the signa-
ture used for the extraction process;

• I is the technique being used to fix the information loss
problem described in Sect. 5.1.

The modularization technique T is one of the elements in
Techs; when T = B, i.e., the baseline, no modularization
happens, and therefore the signature S is ignored, as well as
I . For the other values of T , three new runs are generated for
each named concept C in O1, with S = {C} and I being one
of {NONE, COMPLETE, SIGNATURE − ONLY }
(shortened to {N, C, SO}).

Called NC(O) the number of named concepts in ontology
O and n the number of ontologies in a track, therefore, the
number of runs with O as first ontology for a track is 6 ∗ (3 ∗
NC(O) + 1) ∗ (n− 1).

Information being recorded includes:
• for each ontology, number of concepts, properties, anony-

mous concepts and DL expressivity (in Table 3);
• for each module with |S| = 1, number of concepts,

properties, anonymous concepts and DL expressivity;
• for each pair of ontologies (O1, O2)

– Modules extracted from O1, and percentage reduc-
tion in concept and property number wrt the original
ontology (a sketch of these values is given in Ta-
ble ??);

– Number of mappings and arguments being gener-
ated without modularization (baseline technique B,
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CGU CGL DAQ DOR SEID Total
ALC 32 32 2 31 145 242
ALC(D) 2 2 0 0 0 4
ALCF 1 1 25 0 0 27
ALCF(D) 17 17 0 0 170 204
ALCH(D) 10 10 0 0 0 20
ALCHI 18 18 0 4 0 40
ALCHIF 32 32 0 38 0 102
ALCHIF(D) 6 6 0 0 0 12
ALCHIN 7 7 0 0 0 14
ALCHOF(D) 0 0 0 0 45 45
ALCHOI 10 10 0 17 0 37
ALCHOIF 25 25 0 0 0 50
ALCN 0 0 0 0 73 73
ALCO 0 0 0 0 62 142
ALCOI 53 53 0 5 31 62
EL 196 198 349 363 0 1106
EL+ 90 90 103 69 0 352
SHI 7 7 0 0 0 14

Classes 6.02 6.04 2.22 14.78 62.36 18.82
stdev 8.42 8.42 3.38 28.02 25.82 28.78
Object Proper-
ties

1.94 1.95 0 1.15 11.49 3.33

stdev 5.16 5.17 0 3.75 7.06 6.4
Datatype
Properties

0.28 0.28 0 0 2.81 0.68

stdev 1.17 1.17 0 0 3.78 2.15
Anonymous
Classes

4.98 5 0.43 3.08 33.52 9.81

stdev 11.13 11.14 1.42 10.48 25.96 19.01

TABLE 4
Modules statistics: DL expressivity and number of

modules (upper section) and average and standard
deviation for number of classes, object and datatype
properties, and anonymous classes (lower section).

values in columns Original size (B) and Original
alignments in Table 5 and Table 6);

– Number of mappings and arguments resulting from
modularization with each value for T and I (Table 5
and Table 6);

– Number of mappings being accepted and rejected
by the argumentation process for all cases above
(Table 7 and Table 8);

Where relevant, tables report also the values for each run
excluding the cases in which the reduced alignments had size
0, i.e. no correspondences were found to be relevant.

7.4 Results Discussion

The results presented in Table 13 and in Table 14 show
that the overall impact of using a modularization technique
for reducing the amount of candidate correspondences can
vary from 57% to 95% (candidate column in both tables),
depending on the modularization technique being chosen; the
impact of the information loss solution is more contained:
whichever technique is being used, the expected reduction in
candidate alignments is close to 80% and the search space for
the argumentation is reduced from 75% to 80%.

Paired with the results presented in Table 11, that evaluate
the quality of the resulting alignments in terms of the retention
measures defined in Sect. 7.2, the data outlines the following
conclusion: there is a tradeoff between reduction of the ar-
gumentation search space and retention, where to a reduction
of the search space close to 95% (for the CGU and CGL

Avg size with mod. Avg retained size
System MT C SO N C SO N
Asmov CGL 1.09 1.49 0.93 9.23% 12.08% 8.05%

CGU 1.09 1.49 0.93 9.23% 12.08% 8.05%
B size DAQ 1.77 2.19 1.49 14.16% 17.27% 11.87%
13.22 DOR 1.79 2.01 1.41 13.97% 15.33% 10.98%

SEID 8.94 10.50 8.68 71.64% 81.22% 69.96%
Falcon CGL 1.45 2.14 1.07 11.38% 16.36% 8.40%

CGU 1.45 2.14 1.07 11.38% 16.36% 8.40%
B size DAQ 2.93 3.33 2.59 22.26% 25.53% 19.69%
13.11 DOR 2.61 2.73 2.21 20.69% 21.42% 17.61%

SEID 10.55 11.56 10.23 82.37% 89.50% 79.99%
Lily CGL 5.95 8.15 3.67 12.70% 17.13% 7.88%

CGU 5.95 8.15 3.67 12.70% 17.13% 7.88%
B size DAQ 10.13 11.77 6.71 22.05% 25.55% 14.50%
46.95 DOR 9.40 8.85 5.81 18.95% 17.81% 11.69%

SEID 35.83 37.38 33.45 76.32% 79.53% 71.55%
Ola CGL 0.25 0.25 0.25 0.70% 0.70% 0.70%

CGU 0.25 0.25 0.25 0.70% 0.70% 0.70%
B size DAQ 0.15 0.15 0.15 0.41% 0.41% 0.41%
45.05 DOR 0.38 0.38 0.38 1.03% 1.03% 1.03%

SEID 3.20 3.20 3.20 8.60% 8.60% 8.60%
Ontodna CGL 0.71 0.84 0.65 10.40% 11.94% 9.70%

CGU 0.71 0.84 0.65 10.40% 11.94% 9.70%
B size DAQ 1.32 1.47 1.23 21.14% 23.19% 19.96%
5.92 DOR 0.68 0.72 0.61 10.88% 11.34% 9.94%

SEID 4.12 4.75 4.06 70.30% 79.62% 69.44%

TABLE 7
Average alignment sizes with and without modularization

Avg size with mod. Avg retained size
System MT C SO N C SO N
Asmov CGL 2.36 3.09 1.99 19.00% 23.95% 16.15%

CGU 2.36 3.09 1.99 19.00% 23.95% 16.15%
B size DAQ 4.23 5.26 3.47 33.89% 41.64% 27.49%
13.22 DOR 4.69 5.20 3.69 36.87% 40.32% 28.92%

SEID 8.94 10.50 8.68 71.64% 81.22% 69.96%
Falcon CGL 2.93 4.07 2.21 23.59% 31.68% 17.92%

CGU 2.93 4.07 2.21 23.59% 31.68% 17.92%
B size DAQ 6.30 7.23 5.36 47.96% 55.35% 40.80%
13.11 DOR 6.29 6.57 5.43 50.66% 52.45% 44.05%

SEID 10.56 11.56 10.24 82.37% 89.50% 79.99%
Lily CGL 7.45 10.13 4.58 16.19% 21.62% 10.11%

CGU 7.45 10.13 4.58 16.19% 21.62% 10.11%
B size DAQ 15.23 17.78 9.76 34.23% 39.89% 21.87%
46.95 DOR 13.93 13.17 8.97 29.40% 27.79% 19.06%

SEID 35.84 37.38 33.45 76.32% 79.53% 71.55%
Ola CGL 4.85 4.85 4.85 13.55% 13.55% 13.55%

CGU 4.85 4.85 4.85 13.55% 13.55% 13.55%
B size DAQ 1.87 1.87 1.87 5.44% 5.44% 5.44%
45.05 DOR 4.68 4.68 4.68 13.20% 13.20% 13.20%

SEID 35.20 35.20 35.20 94.61% 94.61% 94.61%
Ontodna CGL 1.97 2.23 1.81 36.32% 39.30% 33.57%

CGU 1.97 2.23 1.81 36.32% 39.30% 33.57%
B size DAQ 3.48 3.88 3.14 60.01% 65.71% 54.97%
5.92 DOR 2.53 2.68 2.27 44.20% 46.22% 40.90%

SEID 4.29 4.93 4.22 73.00% 82.68% 72.11%

TABLE 8
Average alignment sizes with and without modularization

(excluding alignments of size 0)

techniques) corresponds the highest loss on retention, averaged
at 0.05%. Some examples, reported in Table 12, show that in
a very restricted number of cases these techniques can lead to
higher loss in retention, when coupled with lack of information
loss solutions. On the other hand, lower impact on the number
of candidate correspondences, such as in the SEID technique,
produces maximal retention values, thus guaranteeing that no
information is being lost; however, the average reduction in the
search space for this technique (see Table 10) is slightly lower
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Original Original Retained alignment size and # of arguments Avg percent
System MT size (B) arguments C M C A SO M SO A N M N A C M C A SO M SO A N M N A
Asmov CGL 13.22 26.45 0.94 2.98 0.94 2.18 0.93 1.87 7.10% 11.27% 7.10% 8.26% 7.10% 7.10%

CGU 0.94 2.98 0.94 2.18 0.93 1.87 7.10% 11.27% 7.10% 8.26% 7.10% 7.10%
DAQ 1.49 4.38 1.49 3.55 1.49 2.99 11.31% 16.56% 11.31% 13.44% 11.31% 11.31%
DOR 1.41 4.01 1.41 3.59 1.41 2.83 10.70% 15.18% 10.70% 13.60% 10.70% 10.70%
SEID 8.68 21.00 8.68 17.88 8.68 17.36 65.64% 79.38% 65.64% 67.59% 65.64% 65.64%

Falcon CGL 13.10 26.21 1.07 4.28 1.07 2.90 1.07 2.14 8.17% 16.35% 8.17% 11.09% 8.17% 8.17%
CGU 1.07 4.28 1.07 2.90 1.07 2.14 8.17% 16.35% 8.17% 11.09% 8.17% 8.17%
DAQ 2.59 6.67 2.59 5.86 2.59 5.19 19.81% 25.46% 19.81% 22.37% 19.81% 19.81%
DOR 2.21 5.47 2.21 5.23 2.21 4.42 16.88% 20.89% 16.88% 19.95% 16.88% 16.88%
SEID 10.23 23.12 10.23 21.11 10.23 20.47 78.09% 88.21% 78.09% 80.55% 78.09% 78.09%

Lily CGL 46.94 93.89 3.67 16.30 3.67 11.90 3.67 7.35 7.83% 17.37% 7.83% 12.68% 7.83% 7.83%
CGU 3.67 16.30 3.67 11.90 3.67 7.35 7.83% 17.37% 7.83% 12.68% 7.83% 7.83%
DAQ 6.71 23.55 6.71 20.26 6.71 13.43 14.31% 25.09% 14.31% 21.59% 14.31% 14.31%
DOR 5.81 17.71 5.81 18.81 5.81 11.63 12.39% 18.87% 12.39% 20.03% 12.39% 12.39%
SEID 33.45 74.76 33.45 71.67 33.45 66.90 71.26% 79.63% 71.26% 76.34% 71.26% 71.26%

Ola CGL 65.56 131.12 0.40 0.81 0.40 0.81 0.40 0.81 0.62% 0.62% 0.62% 0.62% 0.62% 0.62%
CGU 0.40 0.81 0.40 0.81 0.40 0.81 0.62% 0.62% 0.62% 0.62% 0.62% 0.62%
DAQ 0.25 0.50 0.25 0.50 0.25 0.50 0.39% 0.39% 0.39% 0.39% 0.39% 0.39%
DOR 0.70 1.40 0.70 1.40 0.70 1.40 1.07% 1.07% 1.07% 1.07% 1.07% 1.07%
SEID 5.62 11.25 5.62 11.25 5.62 11.25 8.58% 8.58% 8.58% 8.58% 8.58% 8.58%

Ontodna CGL 5.91 11.83 0.65 1.69 0.65 1.42 0.65 1.31 11.13% 14.31% 11.13% 12.02% 11.13% 11.13%
CGU 0.65 1.69 0.65 1.42 0.65 1.31 11.13% 14.31% 11.13% 12.02% 11.13% 11.13%
DAQ 1.23 2.95 1.23 2.65 1.23 2.47 20.89% 24.95% 20.89% 22.43% 20.89% 20.89%
DOR 0.61 1.45 0.61 1.37 0.61 1.22 10.32% 12.31% 10.32% 11.64% 10.32% 10.32%
SEID 4.06 9.50 4.06 8.25 4.06 8.12 68.70% 80.28% 68.70% 69.75% 68.70% 68.70%

TABLE 5
Average candidate alignment sizes with and without modularization

Original Original Retained alignment size and # of arguments Avg percent
System MT size (B) arguments C M C A SO M SO A N M N A C M C A SO M SO A N M N A
Asmov CGL 13.23 26.45 1.99 6.21 1.99 4.74 1.99 3.97 15.01% 23.47% 15.01% 17.93% 15.01% 15.01%

CGU 1.99 6.21 1.99 4.74 1.99 3.97 15.01% 23.47% 15.01% 17.93% 15.01% 15.01%
DAQ 3.47 10.51 3.47 8.47 3.47 6.94 26.23% 39.74% 26.23% 32.01% 26.23% 26.23%
DOR 3.69 10.40 3.69 9.37 3.69 7.38 27.91% 39.30% 27.91% 35.43% 27.91% 27.91%
SEID 8.68 21.00 8.68 17.88 8.68 17.36 65.64% 79.38% 65.64% 67.59% 65.64% 65.64%

Falcon CGL 13.11 26.22 2.21 8.22 2.21 5.89 2.21 4.43 16.89% 31.34% 16.89% 22.47% 16.89% 16.89%
CGU 2.21 8.22 2.21 5.89 2.21 4.43 16.89% 31.34% 16.89% 22.47% 16.89% 16.89%
DAQ 5.36 14.46 5.36 12.59 5.36 10.71 40.85% 55.14% 40.85% 48.02% 40.85% 40.85%
DOR 5.43 13.15 5.43 12.58 5.43 10.86 41.43% 50.15% 41.43% 47.97% 41.43% 41.43%
SEID 10.24 23.13 10.24 21.12 10.24 20.47 78.09% 88.21% 78.09% 80.55% 78.09% 78.09%

Lily CGL 46.94 93.89 4.58 20.58 4.58 15.11 4.58 9.15 9.75% 21.92% 9.75% 16.09% 9.75% 9.75%
CGU 4.58 20.58 4.58 15.11 4.58 9.15 9.75% 21.92% 9.75% 16.09% 9.75% 9.75%
DAQ 9.76 35.56 9.76 30.47 9.76 19.52 20.79% 37.87% 20.79% 32.45% 20.79% 20.79%
DOR 8.97 26.35 8.97 27.85 8.97 17.94 19.11% 28.06% 19.11% 29.66% 19.11% 19.11%
SEID 33.45 74.76 33.45 71.67 33.45 66.91 71.26% 79.63% 71.26% 76.34% 71.26% 71.26%

Ola CGL 65.56 131.12 7.66 15.33 7.66 15.33 7.66 15.33 11.69% 11.69% 11.69% 11.69% 11.69% 11.69%
CGU 7.66 15.33 7.66 15.33 7.66 15.33 11.69% 11.69% 11.69% 11.69% 11.69% 11.69%
DAQ 3.16 6.32 3.16 6.32 3.16 6.32 4.82% 4.82% 4.82% 4.82% 4.82% 4.82%
DOR 8.62 17.24 8.62 17.24 8.62 17.24 13.15% 13.15% 13.15% 13.15% 13.15% 13.15%
SEID 61.90 123.80 61.90 123.80 61.90 123.80 94.41% 94.41% 94.41% 94.41% 94.41% 94.41%

Ontodna CGL 5.91 11.83 1.81 4.48 1.81 3.97 1.81 3.61 30.54% 37.86% 30.54% 33.57% 30.54% 30.54%
CGU 1.81 4.48 1.81 3.97 1.81 3.61 30.54% 37.86% 30.54% 33.57% 30.54% 30.54%
DAQ 3.14 7.75 3.14 6.95 3.14 6.28 53.08% 65.53% 53.08% 58.77% 53.08% 53.08%
DOR 2.27 5.37 2.27 5.06 2.27 4.54 38.35% 45.37% 38.35% 42.75% 38.35% 38.35%
SEID 4.22 9.87 4.22 8.57 4.22 8.44 71.34% 83.37% 71.34% 72.43% 71.34% 71.34%

TABLE 6
Average candidate alignment sizes with and without modularization (excluding alignments of size 0)

than 24%, and, as shown in the more detailed breakdown in
Table 6 when SEID is used over the results of the Ola system,
it can be as small as 5 %.

These possibilities suggest a flexible architecture able to
use more than one modularization technique, where a lower
than expected number of results to a query can trigger the use
of a more conservative modularization technique; this would
enable the system to guarantee the lowest possible loss of
information, while ensuring maximum reduction of the search
space in the average case.

The quality of the resulting alignments in terms of the
retention measures is quite high: only a handful of cases shows
retention lower than 95%, and a great majority shows retention
equal to 1, therefore granting that the choice of modularization
technique and information loss solution can safely be done on
the basis of the size of the resulting alignment.

Moreover, there is a large number of cases in which the
use of modularization yields an empty alignment, as shown in
Table ??. Experimental evaluation shows that in the largest ma-
jority of these cases (99.85%) an empty alignment is correlated
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Average original alignment size (B): 24.84
DAQ DOR CGU CGL SEID

Accepted C 3.26 2.97 1.89 1.89 12.53
alignment SO 3.78 2.94 2.57 2.57 13.47
size N 2.43 2.08 1.32 1.32 11.92
Accepted C 16.00% 13.10% 8.88% 8.88% 61.85%
alignment SO 18.39% 13.39% 11.64% 11.64% 67.70%
size (%) N 13.28% 10.25% 6.94% 6.94% 59.91%

Average candidate alignment size: 28.95
Average # of arguments: 57.90

DAQ DOR CGU CGL SEID
Avg candidates C 2.46 2.15 1.35 1.35 12.41
with mod. SO 2.46 2.15 1.35 1.35 12.41

N 2.46 2.15 1.35 1.35 12.41
Avg # args C 7.62 6.01 5.22 5.22 27.93
with mod. SO 6.57 6.08 3.85 3.85 26.04

N 4.92 4.30 2.70 2.70 24.83
Avg candidates C 13.34% 10.27% 6.97% 6.97% 58.45%
with mod. SO 13.34% 10.27% 6.97% 6.97% 58.45%
(%) N 13.34% 10.27% 6.97% 6.97% 58.45%
Avg # args C 18.49% 13.66% 11.98% 11.98% 67.22%
with mod. SO 16.04% 13.26% 8.94% 8.94% 60.56%
(%) N 13.34% 10.27% 6.97% 6.97% 58.45%

TABLE 9
Average accepted alignment sizes (averaged by

modularization technique)

Average original alignment size (B): 24.84
DAQ DOR CGU CGL SEID

Accepted C 6.22 6.42 3.91 3.91 18.96
alignment SO 7.20 6.46 4.87 4.87 19.92
size N 4.72 5.01 3.09 3.09 18.36
Accepted C 36.31% 34.87% 21.73% 21.73% 79.59%
alignment SO 41.61% 36.00% 26.02% 26.02% 85.51%
size (%) N 30.11% 29.23% 18.26% 18.26% 77.64%

Average candidate alignment size: 28.95
Average # of arguments: 57.90

DAQ DOR CGU CGL SEID
Avg candidates C 4.98 5.80 3.65 3.65 23.70
with mod. SO 14.92 14.50 10.96 10.96 50.51

N 4.98 5.80 3.65 3.65 23.70
Avg # args C 12.96 14.42 9.01 9.01 48.61
with mod. SO 4.98 5.80 3.65 3.65 23.70

N 9.95 11.59 7.30 7.30 47.40
Avg candidates C 29.16% 27.99% 16.78% 16.78% 76.15%
with mod. SO 29.16% 27.99% 16.78% 16.78% 76.15%
(%) N 29.16% 27.99% 16.78% 16.78% 76.15%
Avg # args C 40.62% 35.21% 25.26% 25.26% 85.00%
with mod. SO 35.22% 33.79% 20.35% 20.35% 78.26%
(%) N 29.16% 27.99% 16.78% 16.78% 76.15%

TABLE 10
Average accepted alignment sizes (averaged by

modularization technique, excluding alignments of size 0)

with no answers available for the concepts in the signature,
even with the complete original alignment. This confirms that
there are cases in which the argumentation process can be
skipped altogether without hampering the reliability of the
system in terms of retention; it is in fact always higher than
99% on average.

Modules: table and discussion
Detailed presentation of the tables
?? missed points in the discussion?

8 CONCLUSIONS

NEEDS REWRITING
Agents need to reconcile ontological differences, especially

within the context of open and dynamic environments where

Technique IR stdev SubR stdev SupR stdev
DAQ 99.87% 0.61% 100% 0% 100% 0%
DOR 99.97% 0.26% 100% 0% 100% 0%
CGU 99.59% 2.85% 99.73% 2.79% 99.73% 2.79%
CGL 99.59% 2.85% 99.73% 2.79% 99.73% 2.79%
SEID 100% 0% 100% 0% 100% 0%
Overall
average 99.80% 1.83% 99.89% 1.77% 99.89% 1.77%

TABLE 11
Instance, Subclass and Superclass Retention values

O1 O2 System I MT IR SubR SupR

OpenConf paperdyne Ontodna N CGL CGU 50.00% 50.00% 50.00%
OpenConf Conference Ontodna N CGL CGU 66.67% 66.67% 66.67%
OpenConf cmt Lily N CGL CGU 71.43% 71.43% 71.43%
OpenConf crs dr Lily N CGL CGU 78.57% 78.57% 78.57%
OpenConf paperdyne Lily N CGL CGU 82.00% 82.50% 82.50%
OpenConf edas Lily N CGL CGU 82.05% 82.05% 82.05%
OpenConf confOf Lily N CGL CGU 87.50% 87.50% 87.50%
OpenConf paperdyne Falcon N CGL CGU 87.50% 87.50% 87.50%

TABLE 12
A snapshot of the lower retention values

no a priori assumptions about the nature of the ontology
can be made. Negotiation frameworks (such as the Meaning-
based argumentation), allow agents to negotiate over different
ontology correspondences, and identify those alignments that
are mutually acceptable. However, this collaborative search
is computationally costly, as the complexity of the decision
problems reach Π(p)

2 -complete. In this paper we have proposed
the use of Ontology Modularization as a mechanism to reduce
the size of the search space for finding acceptable alignments.
The use of ontology modularization as a filter-based pre-
processing stage was evaluated empirically, by considering
three approaches (CGL, CGU and D) over eleven ontologies
used in the OEAI initiative. The results show that the use of
modularization can significantly reduce the average number of
correspondences presented to the argumentation framework,
and hence the size of the search space – in some cases by
up to 97%, across a number of different ontology pairs. In
addition, three patterns emerged: i) where no reduction in size
occurred (in 4.84% of cases on average); ii) where the number
of correspondences was reduced (55.14%); and iii) where
modules of size zero were found (40.02%). We found that
this latter case corresponded to failure scenarios; i.e. where the
subsequent transaction could fail due to insufficient alignment

accepted / % candidate / % arguments / %
DAQ 3.16 / 12.73% 2.46 / 8.50% 6.37 / 11.00%
DOR 2.67 / 10.75% 2.15 / 7.43% 5.47 / 9.44%
CGU 1.93 / 7.77% 1.35 / 4.66% 3.92 / 6.77%
CGL 1.93 / 7.77% 1.35 / 4.66% 3.92 / 6.77%
SEID 12.65 / 50.89% 12.41 / 42.87% 26.26 / 45.36%
C 4.51 / 21.74% 3.95 / 19.20% 10.40 / 24.67%
SO 5.07 / 24.55% 3.95 / 19.20% 9.28 / 21.55%
N 3.82 / 19.47% 3.95 / 19.20% 7.89 / 19.20%

TABLE 13
Average over all runs for each modularization technique
(upper half) and for each information loss solution (lower

half)
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accepted / % candidate / % arguments / %
DAQ 6.05 / 24.34% 4.98 / 17.19% 12.61 / 21.78%
DOR 5.96 / 24.00% 5.80 / 20.02% 13.50 / 23.32%
CGU 3.96 / 15.92% 3.65 / 12.60% 9.09 / 15.70%
CGL 3.96 / 15.92% 3.65 / 12.60% 9.09 / 15.70%
SEID 19.08 / 76.78% 23.70 / 81.85% 48.84 / 84.34%
C 7.89 / 38.84% 8.35 / 33.37% 20.37 / 42.27%
SO 8.66 / 43.03% 8.35 / 33.37% 18.80 / 37.59%
N 6.85 / 34.70% 8.35 / 33.37% 16.71 / 33.37%

TABLE 14
Average over all runs for each modularization technique
(upper half) and for each information loss solution (lower

half). Alignments of size zero are not included in the
average.

MT System Size 0 Size 6= 0 Total Size 0 %
DAQ Asmov 1446 737 2183 66.24%

Falcon 1725 904 2629 65.61%
Lily 1034 1581 2615 39.54%
Ola 4924 336 5260 93.61%
Ontodna 3838 1276 5114 75.05%

Average 68.01%
DOR Asmov 1374 809 2183 62.94%

Falcon 1624 1005 2629 61.77%
Lily 977 1638 2615 37.36%
Ola 4924 336 5260 93.61%
Ontodna 3902 1212 5114 76.30%

Average 66.40%
CGU Asmov 1235 948 2183 56.57%

Falcon 1370 1259 2629 52.11%
Lily 713 1902 2615 27.27%
Ola 5041 219 5260 95.84%
Ontodna 3548 1566 5114 69.38%

Average 60.23%
CGL Asmov 1235 948 2183 56.57%

Falcon 1370 1259 2629 52.11%
Lily 713 1902 2615 27.27%
Ola 5041 219 5260 95.84%
Ontodna 3548 1566 5114 69.38%

Average 60.23%
SEID Asmov 0 2183 2183 0.00%

Falcon 0 2629 2629 0.00%
Lily 0 2615 2615 0.00%
Ola 4880 380 5260 92.78%
Ontodna 208 4906 5114 4.07%

Average 19.37%
Over all techniques

Asmov 5290 5625 10915 48.47%
Falcon 6089 7056 13145 46.32%
Lily 3437 9638 13075 26.29%
Ola 24810 1490 26300 94.33%
Ontodna 15044 10526 25570 58.83%

Overall average 54.85%

TABLE 15
Percentage of empty alignments by modularization

technique and alignment system

between the ontologies. Thus, we demonstrate that ontology
modularization not only reduces the cost of negotiating over
correspondences and establishing communication, but that it
can be effectively used to predict cases where negotiation will
fail to identify relevant correspondences to support meaningful
queries.
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